ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision

1. Momentum is always conserved when collisions occur. Momentum is defined as being a quantity of motion, and it is a product of mass and velocity. A small object travelling with a high velocity has great momentum ( Ex. A bullet ), and a massive object travelling with a low velocity has great momentum (Continue reading “ENERGY AND MOMENTUM: Conservation of Energy, Linear Momentum, and Angular Momentum During a Collision”

EQUILIBRIUM STATICS: Stationary and Moving Center of Mass Derivation

In physics, concepts like force, energy, and motion go hand-in-hand with one another. An unbalanced force will cause an object to accelerate. Equal and opposite force pairs will cause an object to remain at rest or maintain a constant velocity if it is already in motion. When an applied force causes an object or systemContinue reading “EQUILIBRIUM STATICS: Stationary and Moving Center of Mass Derivation”

INTRODUCTION TO ELECTRONICS: Energy and Power ( Part 1 )

Although, energy and power are interrelated concepts, they possess distinct identities of their own. Consider the relatively simple task of inflating a balloon. Blowing a small puff of air into a balloon over a short time-interval will cause the balloon to expand slightly before recoiling to its previous state. Breathing more forcefully into a balloonContinue reading “INTRODUCTION TO ELECTRONICS: Energy and Power ( Part 1 )”

ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )

Q: A ( 1kg ) ball of clay moving with a velocity ( vbi ) collides and sticks to the end of a ( 120cm ) rod of uniform mass ( 2kg ). Assuming that the ball and rod are at rest upon a frictionless surface:  ( a ) Where is the new center ofContinue reading “ENERGY AND MOMENTUM: Conservation of Linear and Angular Momentum ( Part 1 )”

ENERGY AND MOMENTUM: Elastic Collision Determination ( Part 2 )

Q: An elastic collision occurs between two objects of mass ( m1 ) and ( m2 ). Prior to the collision, mass ( m2 ) is stationary and approached by ( m1 ) with a velocity ( v1 ). If only the values of ( m1 ), ( m2 ), and ( v1 ) areContinue reading “ENERGY AND MOMENTUM: Elastic Collision Determination ( Part 2 )”

ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 3 )

Q: Consider a system in which a mass ( m1 = 6kg ) moves in the +x-direction at ( 2 m/s ) as a mass ( m2 = 2kg ) moves in the -x-direction at ( – 4 m/s ): How may we use the center of mass ( c.o.m. ) of this system toContinue reading “ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 3 )”

ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 2 )

In Part 1 of this entry, it was determined that the center of mass between objects moving with constant velocities is also constant ( vcm ): We will now use mass ( kg ) and instantaneous-distance coordinates along ( x ) to determine the system’s center of mass. Let’s begin using the x-coordinates of (Continue reading “ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 2 )”

ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 1 ) 

A system’s center of mass is the location where the average mass distribution of the system is located. Consider a system in which two equal masses rest at the ends of a balance: The sum of torques acting upon the system is zero, and it will remain in static equilibrium until acted upon by anContinue reading “ENERGY AND MOMENTUM: Elastic Collisions and the Center of Mass Velocity ( Part 1 ) “

ENERGY AND MOMENTUM: Final Velocity of Target and Projection After Elastic Collision ( Part 1 )

Q: Within a given system, a projectile moves with a constant velocity ( v1 ) prior to colliding with a stationary target of equal mass ( m1 = m2 ). Since the system is isolated from outside forces, momentum ( p ) and kinetic energy ( KE ) both are conserved during the collision. (Continue reading “ENERGY AND MOMENTUM: Final Velocity of Target and Projection After Elastic Collision ( Part 1 )”

ENERGY AND MOMENTUM: What is the Initial Velocity of the Marble?

Q: A collision occurs between two marbles of equal mass ( m1 = m2 ). Marble ( m2 ) is initially at rest, and ( m1 ) travels with a velocity ( v1 ). After colliding, ( m2 ) acquires a velocity ( v2′y ) of 1.10 m/s and travels 400 from the original lineContinue reading “ENERGY AND MOMENTUM: What is the Initial Velocity of the Marble?”