KINEMATICS: Total Time of Flight for a Projectile

Q: A model-rocket club is standing at the edge of a 40.0 m building. They arrange a launcher so that it is off the cliff’s edge, and they launch a rocket straight upward at an initial velocity ( v ) of 380.0 m/s. Neglecting wind resistance, how long will it take for the rocket toContinue reading “KINEMATICS: Total Time of Flight for a Projectile”

AP PHYSICS: Rotational Kinematics

Q: A 25.0 kg grindstone disc with a 0.250 m radius ( r ) rotates with an angular speed ( ω ) of 30.0 rad/s. When power to the disc is shut off, it decelerates and comes to rest over the course of 20.0 s. When the grindstone is shut off, a speck of dustContinue reading “AP PHYSICS: Rotational Kinematics”

ENERGY AND MOMENTUM: The Potential Energy of a Pendulum

Q: A pendulum of unknown mass ( m ) is rotated through an angle ( θ ) until it is vertically displaced by a distance ( Δh ). As a consequence, it has a gain in potential energy ( PE ) within the gravitational field that is directly proportional to its vertical displacement. If theContinue reading “ENERGY AND MOMENTUM: The Potential Energy of a Pendulum”

KINEMATICS: Matching Equations to Appropriate Circumstances ( Part 1 )

Of all the topics that cause confusion among students new to physics, kinematics is no exception to the rule. Briefly speaking, kinematics can be described as the “ architecture of motion. “ Various types of forces ( F ) and energy ( E ) can give rise to motion observed within a system, whether thatContinue reading “KINEMATICS: Matching Equations to Appropriate Circumstances ( Part 1 )”

ENERGY AND MOMENTUM: The Joule

The International System of Units ( SI ) uses seven base units to describe seven fundamental quantities that can be measured by scientists: Symbol Name  Base quantity second ( s )     time meter ( m )        length kilogram ( kg )  mass ampere ( A ) electric current kelvin (Continue reading “ENERGY AND MOMENTUM: The Joule”

AP PHYSICS: Graph-Slope Interpretation

Interpreting a graph of an object’s acceleration can be tricky, especially when the graph is linear: An object moving with a constant velocity moves through equal distance segments as time transpires. To the contrary, an object that is undergoing a constant acceleration has a velocity that changes as time transpires. As a consequence, plots ofContinue reading “AP PHYSICS: Graph-Slope Interpretation”

AP PHYSICS: Acceleration

An object that moves at a constant speed ( or velocity ) will continue doing so until it is acted upon by a force. Whether such an object speeds up or slows down after being impacted by a force, the change in motion is called an acceleration. Typically, a decrease in motion is referred toContinue reading “AP PHYSICS: Acceleration”

KINEMATICS: Where Will The Daredevil Land?

Q: A stuntman equipped with a parachute rides a bicycle over the edge of a 500.0-meter building. The combined mass of the stuntman and his bicycle is 90.0 kg. If the bike moves at 24.2 m/s as it leaves the building’s edge, at what distance from the building’s base must a cushion be placed inContinue reading “KINEMATICS: Where Will The Daredevil Land?”

FORCE AND ACCELERATION: What is the mass of the climbing acrobat?

Q: Two acrobats, a pulley, and a rope are used in a circus act. Acrobat 1 rapidly climbs one of the suspended lengths of rope at a distance of 16ft in 2 seconds with a constant acceleration. On the opposite length of rope, acrobat 2 is suspended in an attached chair that remains motionless aboveContinue reading “FORCE AND ACCELERATION: What is the mass of the climbing acrobat?”

KINEMATICS: Free Fall Dynamics

Q: An Olympic high diving platform is situated 10 m above the surface of a pool. If a diver steps off the platform, how long does it take for her to hit the water? A: The only information provided is the 10 m distance between the diving platform and the pool’s surface. This necessitates useContinue reading “KINEMATICS: Free Fall Dynamics”